
Operator monotones, the reduction criterion and the relative entropy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 L193

(http://iopscience.iop.org/0305-4470/33/22/101)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) L193–L197. Printed in the UK PII: S0305-4470(00)12219-X

LETTER TO THE EDITOR

Operator monotones, the reduction criterion and the relative
entropy

M B Plenio, S Virmani and P Papadopoulos
Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, UK

Received 28 February 2000

Abstract. We introduce the theory of operator monotone functions and employ it to derive a new
inequality relating the quantum relative entropy and the quantum conditional entropy. We present
applications of this new inequality and, in particular, we prove a new lower bound on the relative
entropy of entanglement and other properties of entanglement measures.

Recently the entanglement of finite systems has received considerable attention [1, 2] when it
was realized that the theory of majorization [3,4] provides a simple mathematical framework in
which the theory can be formulated [2]. In general, the well developed theory of matrix analysis
provides many techniques and ideas that may be useful for the study of entanglement. However,
the restriction to finite entanglement, while justified from an experimental point of view,
places an additional constraint on the system which may cloud some of the truly fundamental
aspects of entanglement. Therefore the study of the asymptotic limit, i.e. a situation in
which large numbers of entangled pairs can be manipulated simultaneously, is of interest
from a fundamental point of view. A substantial body of work has been developed in recent
years, beginning with the case of pure entangled states [5] and an extensive study of different
ways to quantify the amount of entanglement in mixed bipartite states. Some interesting
examples are the entanglement of formation [6, 7], the entanglement of distillation and the
relative entropy of entanglement [8–11]. With the notable exception of the entanglement of
formation [7], these entanglement measures are very difficult to compute analytically even in
the qubit case. Therefore it is of great interest to obtain upper and lower bounds for them.
To further our understanding of entanglement and our ability to manipulate it locally, it is of
interest to try to establish connections with other ideas such as distinguishability [9, 10, 12],
and thermodynamical considerations [14, 15]. In these contexts one mathematical function
emerges as a central quantity, namely the relative entropy, which is defined as

S(σ ||ρ) = tr{σ log σ − σ log ρ}. (1)

It has a number of remarkable properties [8, 12, 13, 16] and is closely related to the problem
of the quantification of entanglement [8–11], the distinguishability of quantum states [9, 10]
and thermodynamical ideas (see, e.g., [17]). Any new inequality relating the relative entropy
to other entropic quantities is therefore expected to lead to potentially important new insights
into any of these topics and is potentially an important contribution.

In general, one would attempt to formulate inequalities that are valid for any density
operator. For the study of entanglement, however, a particular special type of inequality would
be of great interest. These are inequalities that are only valid when at least some of the density
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operators that are involved are non-distillable or separable, but may be violated for distillable
states. These inequalities naturally lead to sufficient criteria for the distillability of states and
they are, as we will demonstrate here, very useful, for example, in the study of entanglement
measures.

In this paper we combine the ideas of positive maps [21,22] with the concept of operator
monotones, which was developed originally in matrix analysis [4] to derive such a new
inequality relating the relative entropy and the entropy. We present some lemmas and
corollaries to this inequality to demonstrate its usefulness. In particular, we derive a new
lower bound on the relative entropy of entanglement and a much simplified proof that for pure
states the relative entropy of entanglement coincides with the entropy of entanglement.

Let us briefly introduce the idea of the operator monotone function as this is a concept
which is not very familiar to quantum information theory. Much more material can be found,
for example, in [4]. First we begin with:

Definition 1. Given two operators A and B, we say that A � B if the operator A − B is a
non-negative operator, i.e. A � B if for all |ψ〉 we have 〈ψ |A− B|ψ〉 � 0.

This definition allows us to compare operators and, in particular, we are now able to introduce
the idea of operator monotones. Given a real valued function f : R → R we canonically
extend it to a function on Hermitean operators [4]. Then we make the following definition.

Definition 2. A function f is called operator monotone, if for all pairs of Hermitean operators
satisfying A � B we have f (A) � f (B).

It should be noted that ordinary monotonicity of a function and operator monotonicity are two
entirely different concepts. An example is the functionf (x) = x2 on the interval [0,∞], which
is not an operator monotone function although it is clearly a monotone function in the ordinary
sense [4]! In physics, and, in particular, in thermodynamics and the theory of entanglement,
the entropy and therefore the logarithm plays a central role. It is therefore important to note
the following lemma.

Lemma 3. The function f (x) = log(x) is operator monotone!

The complicated proof of this theorem can be found in [4, 18]. Lemma 3 is one of the key
ingredients in the proof of our new inequality.

The other major input comes from the theory of positive but not completely positive maps,
whose application to quantum entanglement of mixed states was pioneered by the Horodeckis
and further developed for example in [22]. Positive maps can be used to detect the non-
separability of mixed states and a number of important positive maps have been found, amongst
them the well known partial transposition [19, 20]. Here we employ a different positive map
which has been introduced in [21]. This map, the reduction map , is defined as

(ρ) := 1I tr ρ − ρ. (2)

The reduction map is evidently positive, but not completely positive as the map 1I ⊗ is not
positive, i.e. it can transform a positive operator into a non-positive operator. The corresponding
reduction criterion is then given by

ρ is non-distillable ⇒ ρA ⊗ 1I � ρAB. (3)

The reduction criterion is remarkable as its violation implies distillability of the density operator
ρAB , while this is not known to be the case for the partial transposition.

Now we use the two key properties of operator monotonicity of the logarithm (lemma 3)
and the reduction criterion equation (3) to prove the following theorem.
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Theorem 4. For any non-distillable state ρAB and for any state σAB of a bipartite system AB
we have

S(σA)− S(σAB) � S(σAB ||ρAB)− S(σA||ρA) (4)

S(σB)− S(σAB) � S(σAB ||ρAB)− S(σB ||ρB). (5)

It should be noted that the left-hand side of the inequality is the negative conditional entropy
which is negative for all separable states σAB , while it can take positive values for entangled
states (an example is the singlet state).

Before we discuss the implications of this theorem further let us present its proof.

Proof. Given a non-distillable state ρAB , the reduction criterion and the operator monotonicity
of the logarithm imply that†

log(ρA ⊗ 1IB) � log(ρAB).

This statement is equivalent to

∀σAB : tr{σAB log(ρA)⊗ 1IB} � tr{σAB log ρAB}
⇔ ∀σAB : − tr{σAB log(ρA)⊗ 1IB} � − tr{σAB log ρAB}
⇔ ∀σAB : − tr{σA log ρA} � − tr{σAB log ρAB}.

To draw the connection to the relative entropy we use definition 1 to find the equivalent
statement

∀σAB : −S(σAB) + S(σA)− S(σA)− tr{σA log ρA} � −S(σAB)− tr{σAB log ρAB}
⇔ ∀σAB : −S(σAB) + S(σA) + S(σA||ρA) � S(σAB ||ρAB)
⇔ ∀σAB : S(σA)− S(σAB) � S(σAB ||ρAB)− S(σA||ρA).

Interchanging the roles of A and B we find the second inequality. �
In the following we present some applications of the new inequality presented in theorem 4.

Firstly, let us demonstrate that from theorem 4 we can obtain a new lower bound on the relative
entropy of entanglement. We find the following lemma.

Lemma 5. The relative entropy of entanglement is bounded from below by the negative
conditional entropy, i.e. for all σAB we have

ERE(σAB) � max{S(σA)− S(σAB), S(σB)− S(σAB)}.

Proof. The relative entropy of entanglement is defined as

ERE(σAB) = min
ρAB∈D

S(σAB ||ρAB) (6)

where D either denotes the set of separable states [8,10], the set of states with positive partial
transpose [11] or the set of non-distillable states [24]. Lemma 5 applies to both definitions
and we only prove the strongest one, choosing D to be the set of non-distillable states. Let us
denote by ρ∗

AB the non-distillable state that realizes the relative entropy of entanglement, i.e.

ERE(σAB) = S(σAB ||ρ∗
AB). (7)

From theorem 4 and the non-negativity of the relative entropy we conclude that

S(σA)− S(σAB) � S(σAB ||ρ∗
AB)− S(σA||ρ∗

A)

� S(σAB ||ρ∗
AB)

= E(σAB). (8)

† This has been noted independently by Cerf and Adami [23].
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Interchanging systems A and B and combining the result yields lemma 5. �

A direct consequence of theorem 1 is a relationship between the relative entropy of
entanglement and the entanglement of formation.

Corollary 6. For any bipartite state σAB we have

ERE(σAB) � EF (σAB)− S(σAB).

Proof. This follows immediately from lemma 5 because EF (σAB) � S(σA). �

A remarkable consequence of theorem 1 is a very simple proof, that the relative entropy of
entanglement for pure states coincides with the entropy of entanglement, i.e. the entropy of the
reduced density operator of one subsystem. This statement was first proven in [10]; however,
these proofs are very complicated. Using lemma 5 this proof is simplified considerably.

Corollary 7. For pure states |ψAB〉 we find

ERE(|ψAB〉〈ψAB |) = S(ρA) (9)

where ρA = trB{|ψAB〉〈ψAB |}.

Proof. Up to local unitary operations we can write |ψAB〉 = ∑n
i=1 αi |i〉A|i〉B for an

orthonormal basis {|i〉}i=1,n. For the mixed state ρAB = ∑n
i=1 |αi |2|ii〉〈ii| we find

ERE(|ψAB〉〈ψAB |) � S(|ψAB〉〈ψAB |||ρAB) = S(ρA). On the other hand, lemma 1 provides
ERE(|ψAB〉〈ψAB |) � S(ρA) and therefore we conclude that corollary 7 is correct. �

It is interesting to note that, to our knowledge, for all states for which we know the
distillable entanglement under local operations and one-way communication, it actually
coincides with the negative conditional entropy and one may conjecture that indeed the
distillable entanglement under local operations and one-way communication is equal to the
negative conditional entropy. A similar conjecture has been made by Rains for maximally
correlated states [11].

Another small conclusion we can draw from theorem 1 is presented in the following
lemma.

Lemma 8. For states σAB such that ERE(σ) = max{S(σA) − S(σAB), S(σB) − S(σAB)} the
closest state ρ∗

AB ∈ D must have the same reduced density operator as σAB .

Proof. Without restricting generality we can assume ERE(σAB) = S(σA) − S(σAB). This
implies S(σAB ||ρ∗

AB) = S(σA) − S(σAB). But from theorem 4 we have S(σAB ||ρ∗
AB) −

S(σA||ρ∗
A) � S(σA)− S(σAB), which implies S(σA||ρ∗

A) = 0 and therefore σA = ρ∗
A. �

It is important to note that the lower bound derived in lemma 5 is actually additive.
This allows us to draw some conclusions concerning the additivity of the relative entropy of
entanglement. In fact, for density operators that achieve the lower bound presented in lemma 5
the relative entropy is additive.

Lemma 9. If two density operators ρ1 and ρ2 both satisfyERE(ρi) = S(ρi,A)−S(ρi,AB) then
we have

ERE(ρ1 ⊗ ρ2) = ERE(ρ1) + ERE(ρ2) (10)

i.e. the relative entropy of entanglement is additive for ρ1 and ρ2.
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Proof. It is obvious that for any ρ1 and ρ2 we haveERE(ρ1 ⊗ρ2) � ERE(ρ1)+ERE(ρ2), but on
the other handERE(ρ1⊗ρ2) � S(ρ1A⊗ρ2A)−S(ρ1AB⊗ρ2AB) = ERE(ρ1)+ERE(ρ2) because
of additivity of the conditional entropy. Therefore ERE(ρ1 ⊗ ρ2) = ERE(ρ1) + ERE(ρ2). �

In summary, we have proven a new inequality relating the quantum conditional entropy
and quantum relative entropy. To demonstrate the usefulness of this inequality, we have
used it to derive a new lower bound on the relative entropy of entanglement as well as some
remarkably simple proofs of some other properties of the relative entropy of entanglement.
Relations between different entanglement measures could be obtained from our inequality and
we believe that this will lead to other useful applications in such diverse fields as entanglement,
distinguishability or thermodynamics.
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